在双碳背景下,聚乳酸(PLA)具有强度高、可完全降解的特点,是替代石油基聚合物的优良材料。但PLA的极限氧指数(LOI)仅20%,易燃烧,这极大限制了其在电子电器、汽车等领域的应用。目前商业阻燃剂存在着明显的缺点和不足。如卤系阻燃剂阻燃效率高,但是燃烧过程会释放有毒气体,对环境及人体造成危害;无机阻燃剂阻燃效率低,用量大,与聚合物相容性差,高添加量时对聚合物力学性能影响大;有机磷系及氮系阻燃剂与聚合物相容性好,但是阻燃效率不及卤系阻燃剂,同样存在低效高添加的问题。稀土因其独特的4f电子轨道,其化合物通常表现出丰富的反应活性,如催化酯化作用和高热稳定性,因此稀土化合物在阻燃领域逐渐受到人们的关注。
中国科学院海西研究院厦门稀土材料研究中心宋立军团队在之前稀土DOPO衍生物阻燃基础上,集成有机含磷配体2-羧乙基苯基次磷酸(CEPPA)和稀土铈元素的优点;,设计合成了兼具高热稳定性和相容性的新型片层状稀土配合物Ce@CEPPA。将其与商业化阻燃剂APP以1:4的比例复合,总添加量仅需5%即可使PLA复合材料的垂直燃烧等级达V-0级,极限氧指数达29.4%。研究发现,在燃烧过程中,配合物在热分解时形成Ce2P2Ox簇或纳米颗粒,显著加速催化PLA分子链成碳和APP的脱氨分解成酸;同时配合物的层状结构本身也诱导碳层取向生长,从而形成了含铈交联密集富磷碳层,有效隔绝空气、热量和可燃气体。此外,配合物和APP分解及PLA分子链成碳过程中,产生大量的氨气、水汽及其它不可燃气体,稀释可燃性气体和氧气。通过在凝聚相和气相共同作用,Ce@CEPPA大幅提升了PLA复合材料的火安全性能,拓宽了PLA的应用范围。该研究为稀土阻燃高分子材料研发提供了新思路,为拓展稀土下游应用提供了理论基础。
该成果以“Synthesis of cerium-based flame retardant containing phosphorus and its impact on the flammability of polylactic acid”为题发表在SCI一区期刊《International Journal of Biological Macromolecules》(2024,271,132636,doi:10.1016/j.ijbiomac.2024.132636)。硕士研究生曾军玮为第一作者,宋立军研究员为通讯作者。
原文链接:厦门稀土材料研究中心在稀土化合物协效阻燃聚乳酸研究取得进展