施加外磁场可以调控磁性材料的电极化、光偏振、温度、几何形状等宏观物性,即实现磁电、磁光、磁热、磁弹等效应。这些效应是构成磁性功能器件如磁探测仪、磁光克尔仪、磁制冷机等的物理基础。考虑到材料的宏观物性与微观电子结构存在密切关系,最直观的想法是通过磁场直接调控电子能带结构,从而改变材料的电学及光学等特性。在外磁场的作用下,原本简并的电子自旋态会产生塞曼能级劈裂。然而这是一个微小的能量量级,如1特斯拉的巨大磁场(约地磁场的三万倍)只能产生的微小能级劈裂,远小于室温下的热涨落,因此无法用于器件设计及应用。
近日,中国科学院宁波材料技术与工程研究所钟志诚研究员团队和荷兰特文特大学廖昭亮博士合作,提出了一种新型的磁控电子结构效应:通过外磁场调控磁化方向,借助自旋轨道耦合,实现电子能带结构的巨大改变。理论预测该效应中外磁场对电子能带结构的能量调控可以高达,比经典的塞曼效应大了3个数量级,高于室温下的热涨落,可用于设计新型的磁电、磁光器件。
研究人员首先采用模型分析,发现在具有低对称性、强自旋轨道耦合和长程铁磁序的材料中,通过施加外磁场改变磁化方向,借助自旋轨道耦合,可以实现能带结构的巨大改变(如图1所示)。但困难在于一直缺乏满足以上条件的材料体系,直到最近发现了能完美符合以上条件的二维铁磁材料。研究人员以二维铁磁材料CrI3为例,采用第一性原理计算,预测该材料具有巨大的磁控电子结构效应(如图2所示)。当磁化方向从面外调控到面内时,电子能带结构会从直接带隙转变为间接带隙,费米面也会发生变化(如图3所示)。此外,磁化方向的改变还可以驱动拓扑相变。这些显著的能带变化会改变光学、电输运性质。例如,可以利用磁场调控磁化方向控制荧光效应。另外,费米面的变化会诱导出巨大的各向异性磁阻,拓扑相变会改变材料的表面态的拓扑特性(如图4所示)。这些理论预言的功能性质的变化未来可以通过进一步的实验证实。
综上所述,该工作提出了一种全新的磁控电子结构效应,即通过施加外磁场改变磁化方向,实现对能带结构的巨大改变,进而调控一系列相关的电子特性。利用该效应,可以制备出新型的自旋电子器件及磁电、磁光器件。此外,该效应需要满足低对称性、强自旋轨道耦合、长程铁磁序三个条件,基于以上条件进行搜寻,有望发现更多具有磁控电子结构效应的材料体系。
上述工作于2018年5月22日以“Spin Direction-Controlled Electronic Band Structure in Two-Dimensional Ferromagnetic CrI3”为题发表在Nano Letters (Nano Lett. 2018, 18, 3844-3849)期刊 (论文链接:https://pubs.acs.org/doi/abs/10.1021/acs.nanolett.8b01125)。宁波材料所的蒋沛恒博士和李磊博士为该论文的共同一作,宁波材料所钟志诚研究员和荷兰特文特大学廖昭亮博士为共同通讯作者,南京大学的赵宇心教授参与拓扑部分的讨论。该工作得到了国家重点研发计划(2017YFA0303602)、国家自然科学基金(11774360)及宁波市3315创新团队的支持,所有的数值计算都在宁波材料所超算中心进行。